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:3 0. Introduction and Summary

" e

Among the non-Gaussian signal detection models, the models

RA

associated with non-homogéneous Poisson processes (NHPP's) are

;e
,* Py
Lt i

N : perhaps the most applicable and most tractable.

This paper concerns same-shape families of NHPP's, that is,

;u; \- families for which the ratio of any two mean funéfions is a constant.
;:; © One such family is, of courée, the family of homogeneous Poisson

'fﬁ ) .processés (HPP's). Another such fami;y 13 the set of'all NHPP's

fﬁ with mean functions of the form u(t) = 8 1n (1 + 3t), where 8 > 0.

:ﬁ In general, one is concerned with R(uo), which contains all NHPP

*53 laws with mean functions of the forﬁ u(t) = 8 uo(t), where B > O.

}Ef For each such family, five different signal detection problems
;;é are considered. In each problem the pure noise (PN) situation is

oy specified, and any data which indicates that something other than

.iﬁ the specified situation has occurred, leads to the conclusion that
~$§ some signal is present, i.e., one has a noise-plus-signgl (N+S)

;: situation.

%i; ” These five signal detection problems are as follows.

o

2 " Problemn PN: Ze a(u)

o (Goodness-of-fit with nuisance parameter or class-fit)

;ﬁ F Worcester Institute of Technology

A ** California State University, Sacramento

;:; This research was princ?Pa{}x_s%ﬁyorted by the Office of Naval Research
- through Grant No, N00014-80-C-0208.
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Problem B PN: ;fe 2(ug) and u(.) = By uo(*)
(Goodness-of-fit)

PR A

Problem C PN: ;fl =Zo le aluo)]

4
B
Leleielaav. 0

o

(2-sample problem)

N
;ﬁ Problem D PN: JLe 2(ug) and uy(+) = ag upl-)
e (modified 2-sample problem)
35 Problem E dealuy) anddy =fo= ... =Le
;i (c-sample problem)
_:; For egch of these (non-Gaussian) signal detection problems, one
%;% éonsiders five different data collection schemes or sampling plans.
ﬁ A At least one detection rule‘is developed for every one of these
¥ _ éS sampling-ﬁlan-problem combinations. -
| Section 1 introduces the notation, distributions, etc. Section 2
treats the sampling plans and their associated likelihood functions.
3 Sections 3, 4, 5, 6, and 7 treat detection problems A, B, C, D and E,
{g respectively. Finally, in the appendix, numerical illustrations of
;j each technique are given.
3
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1. Statistical Preliminaries

Most of the distributions and concepts employed in this paper

‘ are fairly standard. However, 1t is worthwhile to give the more
common notation and abbreviations one will encounter.

’

:j 1.1 Notation

? (1) MSS = minimal sufficient statistic

(2) MIE = maximum likelihood estimate

:: (3) MVUE - minimum variance unbiased estimate

2 () LHR = 1ikelihood ratio

- (5) GOF = goodness-of-fit

j v ' (6) HPP = homogeneous Poisson. Process

'33 (7) NEPP = non-homogeneous Poisson Process

R (8) PR = pure noise

; (9) N4 = noise plus signal

. (10) k-8 = Kolmogorov-Smirnov |

2] (11) '\-Bs Neyman-Barton

3 (12) @(ug) = the family of laws of NHPP's with mean functions
¥ of the form u(-) = 8 uy(-)

‘ 1.2 Methodology. The paper concerns NHPP's and inference relative
.' to their parameter values. The cituation is that when there is PN (pure
= noise), the parameter is in a certain range of values and when there is
'; signal present, i.e., the N+S case, the parameter is in some other

. range of values.

N
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This being the case, one will be concerned with MSS's (minimal

wnd Coa
]

P
4 J.{L‘

W oS
e

sufficient statistics) for the parameters, as well as MLE's

(maximum likelihood estimates) and MVUE's (minimum variance unbiased

S,
A

estimate).
The detection procedures will be based on reducing the detection

problems to GOF (goodness-of-fit), 2-sample, and c-sample statistical

. o
o 2 - @ =g

problems. The GOF problems will be treated with K-S (Kolmogorov-
Smirnov) and ¥]-B (Neyman-Barton) type statistics. (See Section 1.3
below)i For the 2-sample and c-sample problems, the detection pro-
cedures will be LHR (likelihood ratio) procedures, or conditional

X procedures. |

::3 ' For each of the detection ﬁrobleﬁs, the number of possible
procedures 1s quite large. In this paper, only one or .two procédures
: ' is giveﬁ for each problem.. These procedures weré chosen on the basis
‘of optimality and simplicity. Some of the references in the
bibliography contain alternate statistical technicues which can be

ay . adapted to signal detection.

“~
“
b : .
f} 1.3 Statistical Distributions. The signal detection models
N
considered in this paper involve only NHPP's. However, ror each of
the detection problems five different sampling plans are considered—-
. Plan A (Type I Censoring);
- Plan B (Type II Censoring);
Plan C (Regular Sampling);

- Plan D (Equal-Distance Sampling); and

~ Plan E (Same-Shape Sempling).
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A variety of standard statistical distributions come into play.

They are as follows:

kt
11 (1) Exp(a) = Exponential distribution with mean A-l
' (2) Po(2) = Poisson distribution with mean )
éf (3) x2 = Chi-square distribution with "m" degrees of
k: m
> freedon
(4) Ge(p) = Geometric distribution with parameter p
(5) u(o,0) = Uniform distribution on (0,0)
N (6) T(n,2) = Gamma distribution with parameters n and A
2
N (7) B(m,p) = Binomial distribution with parameters m and p
(8) F(m,k) = Fisher's F-distribution with m and k degrees of
» freedom, respectively
N (9) N-B(k,p) = Negative Binomial distribution with perameters
: k and p
* (10) €(-) = the one-point distribution with all probability
1 at 0, i.e. e{u) =1 foru > 03 = 0 for u < 0.
L .
{- Besides the distributions above, one will be concerned with several
Y ’ .
. distributions based on random samples, Xj, ..., Xy 1i.1.d. G(-), with
- order statistics X(1), ..., X(m).
¥
) (a) G-0-S(m) = the distribution of the vector [X(1), ..., x(m)]
: (v) U-0-s(m) = the distribution above when G = U(0,1)
! (c¢) EDF = empirical distribution function,
5 1 m
N Fp(z) = m 1 i e(z - X3) and e(+) 1s as in (10) above.
A This is a mixture of one-point distributions.
= (d) K-S(m) = the distribution of the Kolmogorov-Smirnov
. statistic D(G,m) = sup | Fm(z) - G(2)].
ol
" (e) N-B(x) = the (exact) distribution of the Neyman-Barton
3 statistic (V - u) L1 (V - u)', vhere
J - - - ~
: 1l 1 1 =1 2 <k
5,5', ...,m], V= [(vo, v, ..., V7]
LY
- -1 k
- with ¥ = k * ); X", and £ = (opg), with
N
) Opg = rs [(r+1)(s+1)(r+s+1)]™2,
N
a )
l -
N P N L -
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[This distribution is asymptotically xi.]

For each of these distributions one writes, e.g., X ~ G, to
indicate that G is the distribution of X; and (Y1, ..., ¥Yp] ~ G-0-S(m),
when the vector has the distribution in (a) above.

One now introduces the five sampling plans for dealing with the
NHPP's. Several of these plans are "natural.”" For example, it is
often necessary (for a variety of reasons) to stop sampling at some
fixed time T*, or to stop after the occurrence of some fixed number
of events.

Other times, it is desirable to sample in such a way that certain
distributional and computgtiénal difficulties are surmounted. Such
is the case with equal;distance and same-shape éampling.

All of these plans, fheir associated likglihooa functions, MSS's

and MLE's are treated in the next section.

Wt e e T e e T T el N T T .‘I
2 BN ala ala e 2 a0 ot al.
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‘i 2. Sampling Plans, Likelihood Functions MLE and MSS's
=4
A

Five different sampling plans will be considered.

% 2.1 Sampling Plan A: Type I Censoring. The stopping rule
b here is: Stop a time T*. The data is then,

Z = [k, W, ..., W]

~

*). It is well known that

where k = N(T

Theorem 2.1.1 Conditionally, given N(T*) = k,

2
LI S

(a) W = [wy, ..., W] ~ Guo-O-S(k),

e la-t

where G,(y) = -}%, for 0 < t < T%, and
u(T")

o (Wy) uo (W)

. (o) [;;75;7, cees ;;?E?S

.’?.,‘

"..:"‘

] ~ U-0-s(k).

v X
2 le

(e) Further, the likelihood function is

' .
L(z) = L(w | N(T*) = k) P{ M(T*) = k} = §° [ﬁ o (wy)] exp { = B u(T¥)} .
1 .
From the likelihood function, one derives the following.

N Theorem 2.1.2 (a) The MSS for B is N(T") ~ Po(Buo(T*)).

N(T")

UQ(T’)

(c) E(B) = 8 and V(B) = ——5—;— X
uol(T™)

(b) The MIE of B is B ="

and

- The signal detection methodology for this sampling plan will employ

the previous two theorems.

2.2 Sampling Plan B: Type II Censoring

The stopping rule here is: Stop at Wy, the Nth waiting time.

- The data is, then, W = [wWy, ..., Wyl.

N The principal distribution theorem is analagous to Theorem 2.1.1 above.
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Theorem 2.2.1. (a) Conditionally, given Wp = Wy

W= (W, ..., Wy-1) T Gy,~0-S(N-1), and

(w1)
(b) [-:-i%(w—rlly, cees :Z(wn— ] ~ U-0-S(N-1).

(c) Further, the likelihood function is

L (Y) = L (W], ., wg-1 | Wy = w") Ly (w")

= ¥ [l (W) exp {-Buo(vw™)} .
l .
Employing the likelihocod function, one obtains

Theorem 2.2.2 (a) The MSS of 8 is ug(Wy) ~ I(N,8).

Further, ZBuA(WN) - x2

2N*
: 2 - N a ,-_-M
(b) The MIE of B8 is B i (o) w;th E(Bg) o1
A 2 o2
v - EE
(N-1)(N-2)
(c) The UMVUE of 8 is g8* = —N-1 &) §, witn
UO(WN)
*y _ *y 82

The signal detection procedures for this sampling plan will

primarily be based on the two preceding theorems.

2.3 Sampling Plan C: Regular Sampling. Here, one observes

the process at times A, 2A, ..., kA, and the data is Y = [Y;, ..., Y]
where Y; = N(a), Yo = N(2a) - N(a), ... Yi = N(ka) - N([k-1]a).

The basic distribution results are as follows:

Theorem 2.3.1 (a) Y3, ..., Yx are independent.

(v) Yy ~ Po(bjB), where by = ug(Ja) = ug([J-1]a), for § =1, 2, ...

................

3 I N MO AP IESEIEAIN S BRI Y AE PP PO, PP P RY S IR WL S PG R LY
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{c) The likelihood function is
kN(kA)  k . ¥y k
( 1 % J 1 I yJ-]
1 1

-1

L(y) = B8 exp {- Bug(ka)}

One uses the likelihood function to establish

Theorem 2.3.2 (a) The MSS for B is N(kA) ~ Py(Bug(kA))

(v) The MLE of 8 is 5 = §1%§%7
(o]

(e) £(8) = 8 and V(g) =';;%EXT

As is usual, these last two theorems form the basis for the

signal detection procedures for regular sampling.

2.4 Sampling Plan D: Equal-Distance Sampling. In this sampling

plan one observes N(t1), N(t2), ..., N(tx) where ug(ty) = r ngy(ty).
The data here is Y = (Y7, ..., Yy, where Yp = N(ty) - N(tp_7)
forr=1, 2, ..., k and t5 = O,

The pertinent distribution result is

Theorem 2.4.1 (a) Y1, ..., Y, are 1.1.d. Po(Bug(ty))

k
N (b) The likelihood function is

-1
Ly) = [euolty)N(t) [ }Eyj!l exp {- k8uo(t1)}.

Immediate consequences are as follows.

Theorem 2.4.2 () The MSS for B is N(ty) ~ Po(Buo(tx)).
N(t)  Nty)
Holtx) — kuglti)

(c) E(8) = 8 and V(B) = ;;%EET

(b) The MIE of 8 is B =

~~~~~~~~




A7 Irdl

X
(
X

K At o Auea ittt st At et Il A AL A Al S e R A AR A SR P AT NS PN

....................

_10—
These last two theorems will be utilized in constructing the
detection procedures for the equal-distance sampling plan.
The final sampling plan is the same-shape sampling plan adapted
from Basawa and Rao (1980), who were concerned with homogeneous

Poisson Processes (HPP's).

2.5 Sampling Plan E: Same-Shape Samrling. Let {N(t)} , the

NHPP of interest, have mean function Buy(:) and waiting times {W.},
and let {N*(t)} be an NHPP independent of {N(t)} and having mesn

function ug(+) and waiting times {Wp} .

One observes g* = [N(WI), cees N(W;)] and computes Y = (Y1, ..., Yk,
_ * - *y * - *y *
Yl = N(Wl), Y, N(Wg) N(Wl), 2 ~N(Wk) N(Wk-l)

It can be reédily proved that

Theorem 2.5.1 (a) Y Y, are 1.1.d. Ge(p) with p = [1 + 8] L.

12 creo

(b) ? Y, = N(W;) ~ N-B(k,p).

(¢) The likelihood function

Ly) = k N(W ) _ N(w )

It follows that

Theorem 2.5.2 (a) The MSS for B is N(W;).
N (W)

(b) The MIE of 8 is B = - = 1.
(c) B(3) = 8 ana v(3) EL8)

One is now in a position to develop the various signal detection

procedures.




" . CEARATIRI A R i D A I - e St S e it et S il AR e et ""T -

—ll.—

The detection rules will be designateu- first, by problem; second,
by sampling plan; and third, by the number. For example, "Detection
Rule B.II.1" refers to the first detection rule for Detection
Problem B with Sampling Plan II; and "Detection Rule C.III.2" refers

to the second detection rule for Problem C and Sampling Plan III.
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3. Signal Detection for Problem A: Class-fit, or Goodness-of-fit

with Nuisance Parameter.
The situation here is that, if there is pure noise, the NHPP law
is in 2(¥,), while if signal if present, what is received is governed

by a law not in @(¥,). One has

PN :ie 2 (Ho) vs N+S :of,{ Qkg ) .

The decision procedures, of course, depend on the sampling plan.

*
3.1 Sampling Plan A (Type I Censoring) Here one stops at time T,

uo (W
where N(T*) = k. and computes v=[V], ..., Vx] vwhere Vr=—9(—L)

wo(r*)
Then, as in Theorem 2.1.1, v :'; U~-0-S (k).
Hence, the class-fit problem is ndw a GOF problem.
One now forms, F'(z) = Y }zt; e(z - V) 3 \/_s#l'lévs, and
k k ] r’ 2 k 1 J
\z = [71, V?, eeey V_pJ, and bases the decision rules on these entities.

Detection Rule A.I.1 Decide N + S iff D= sup | Fg (z) ~z| >4a
0<z<1 (kya)?

where d(k, a) is the appropriate percentile from a K-S(k) distribution.
This K-S detection rule is considered an "omnibus" rule in the sense
that it is consistent against "all" alternatives.
Adaptation of the work of Neyman (1937) and Barton (1953) yield

procedures recommended for certain "smooth" N + S situations.

Detection Rule A.I1.2 Decide N + S iff

- - +-1 _ ! 2 ol 1 1
Bp = k (V g)z (v M) >xp(1—a), vhere ¥ = [E’ 5 ...,m] and
o _ rs
L = (crs)’ witho = (r+1)(s+1)(r+s+l) °
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The detection procedures are different for different sampling
plans. However, for this detection problem, they are similar for

the first two sampling plans.

3.2 Sempling Plan II (Type II Censoring) The data here is

*
W= (W, ..., Wy ], and under PN [vl, cees VN-l] ~ U-0-8 (N-1),
Uy (Wyp)
#* o\"r
where Vp = ) "
Yo Wh

The detection rules here are

Detection Rule A.II.1 Same as Detection Rule 3.1.1 where

k is replaced by N-1 and V's are replaced by V''s

Detection Rule A.I1.2 Same as Detection Rule 3.1.2, where

V's are replaced by:V*'

3.3 Sampling Plen ITI (Regular Sampling) For this sampling

Yk are independent with Y

plan, Y 3

R ~ P_(bs8) under PN (See
Section 2.3).

A useful straightforward detection rule is

Detection Rule A.III.1 Decide N + S iff

¥]

luo(ka) N(ka) 1™ & w31 [yg uola) - vy M(xa)12 > xgp (a).

J=1
For the next sampling plan, the increments Y; are i.i.d., and, hence,

the detection procedure is somewhat simpler.

----------------

PSS P N VR Y S WP T TS DAL I S St WP S G U VS I Sl PRSP WA




e RS S E RIS S S A0 L L SO DA S P A A 1

- 14 -

3.4 Sampling Plan IV (Equal-Distance Sampling) One recalls

:'¥ (Section 2.4) that Y5 ..., Y, are i.i.d. Po(Bug(ty)), where 1

-

decision rule of interest is then

4
Ly T
+
Sl

Detection Rule A.IV.1 Decide N + S iff

d
&
.

”
AR R
PRI T

P Ik

e k

i x2 (a1t = (DT 1 o(r,-DF

- k-1 ' J=1
.I_;: k
2 = ¥y [N(tp) = N(tp-1) - — ]
Ij’_ . N tk r=1 k
- |
ot Each of these rules is, of course, illustrated by a numerical
§?$ example in the appendix. !
N -
i:} The final detection rule for this section is based on same-shape

sampling. !

&
VL 3.5 Sempling Plan V (Same-Shape Sampling) For this sampling
AN

< plan, under PN the Y's are i.i.d4. Ge(p) where p = [1+8] 1 ana
| Y. = N(Wp) - N(Wp_3) with Wg = 0. (See Section 2.5)
% |
ix, Following usual procedures one develops

-:\.

- Detection Rule A.V.1l Decide N + S 1ff

o s+1 o 2

2o - kR

- X a

o' r=1 - s-1

O kp(Cy)
f}} Here, {Al, ey As} are integers satisfying Ao =0« A1 < A2
.E; < ... <A (= Then, one chooses C = {1+A ., 2+A ., ..., Al
WOR for 1 {r <s, and Cs+l = {As’ 2+ As’ e}

"

oy

??733337$??3‘7kv Pl -
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} Let n = the number of Y's in C.» and

: < 1+4A T 1+4A

X plc) = (——Y_) rl_(_Y_) I forl1<r<s

r 1+Y 1+
X 14A
and P(C,,) = 1+ (2 T- L.

- 1+Y 1+Y

" {Cl, cees Cs+1} constitute a partition of the non-negstive

- integers, and there are many such partitions. The partition which
T will be used in the numerical examples of the appendix is as follows:
i Ci = {0,5,10,15,...} ; Cé = {1,6,11,16,...} ; Cé = {2,7,12,17,...} 3

c, = {3,8,13,18,...} and c% = {4,9,14,19,...} .

“-‘ -~ Ay A - -~ —l

X, ‘Here, $(C) = HA)TT (1-(°] forr=1, ..., 5, where
>
X > PN — _l ~ a
3 p=1[1+Y] and q=1- p.

- One turns now to the second detection problem.

-

1,.

<,

;

a

o

o

"

A
'8
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4, Signal Detection for Problem B: Goodness—of-Fit

The PN case here entails the stochastic process law to be completely

known, i.e. to be a NHPP law with mean function u(-) satisfying

u(t) = Boug(t); given that er alug).

PN : u(-) = BoMo() ve. N+ @ u(-) # Bo¥o(*)

The problem here is to decide whether or not B8 = Bo'

4.1 Sampling Plan I (Type I Censoring) Under PN (Section 2.1) the

MSS for 8 is N(T*)'~ Po(Bouo(T*)). The detection rule, then is

Detection Rule B.I.1 Decide N + S iff N(T*) < a, or N(T*) > a5,

a -A T @ e=A )\r
vhere zl EL—TA—- + I -24;TA— = a with X = Bouo(T*).
=0 . TV ree, )

In practice, one would probably wish to choose a; and 8, to have
approximately equal tail probabilities under PN.
Contrary to what was true for Problem A, the detection rule for

Sampling Plan II here is somewhat different from that for Plan I.

4.2 Sampling Plan II (Type II Censoring) One uses the fact that

under PN, ZBOuO(WN) - XSN’ to construct a reasonable detection rule.

(See Section 2.2)

Detection Rule B.II.1 Decide N + S iff 2Bouo(Wy) < by or > b,

o are appropriate percentiles of the ng - distribution.

where bl and b

For the third sampling plan, one makes use of an approximate

chi-square distribution.




DAL T B AN

......

-17-

4.3 Sampling Plan III (Regular Sampling) The data in this case

isY = (Yl, ceey I

-~

k), vhere Y = N(ra) - N([r-1]a), with N(0O) = O,

Further, one recalls {(Section 2.3) that under PN Y Y. are

1 ceee Yy
independent with ¥ _ - PO(Bbr), where by = ug(ra) = ug([r-1]a).

One useful detection rﬁle is

Detection Rule B.III.1 Decide N + S iff

=
[}

k
I (8o br) 7t Yy - B 112 > 2 (1 - a).
r=1

Another such rule (which employs the MSS for B) is

k
Detection Rule B.III.2 Decide N + S 1ff I Y = N(kA) < a; or 2 a,
1 .

(as in Detection Rule B.I.1).

The situation is somewhat different for equal-distance sampling.

L.4 Sampling Plan IV (Equal-Distance Sampling) From Section 4.k,

one recalls that u_(ty) = rty; Yr = N(ty) = N(tp—1) with N(0) = 0;
and that Yl’ ey Yk are i.i.d. PO(Bouo(tl)) under PN, and that
N(t,) 1s the MSS for 8.

Under such circumstances one constructs .

Detection Rule B.IV.1 Decide N + S 1ff L Y = N(t;) < a) or > &,
1

(as in Detection Rule B.III.2).

4.5 Sampling Plan V (Same-Shape Sempling) The M-S-S for B (Section 2.5)

Y_ = §(W}), vhich under PN, - §-B(k,p) for p = [1 + go] ™ .

(ol B

Under these circumstances one employs the detection rule below.

T S S S S A T S P
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k
Detection Rule B.V.1 Decide N+ S iff LY = N(W;) < b, or > by,
1 s 2

where b1 and b2 are appropriate percentiles of the Negative Binomial

distribution.

This final detection rule as well as the other rules of this section
are illustrated in the appendix.
Fb; the next detection problem, the rules are quite different in

the sense that most of them are conditional rules.
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x 5. Signal Detection for Problem C (2-sample)

f% For this problem it is assumed that data from two processes with

"t

;2 laws in Q(u,) are being received. The PN situation entails the equality
™~ 3

of the two laws, which is equivalent to the equality of the mean functions

PN ’il =£2 (i.e. B, = 82) vs N+ S :oﬂl #0{2

" 5.1 Sampling Plan I (Type I Censoring) Let {N(t)} and {M(t)} be
‘Sj the two independent NHPP processes and {Wr} and {W:} be their respective
;,‘ ' waiting times. Observation of both processes is in the time interval

[(0,7*]. The data is then (following Section 2.5)

* =
.,wm]

. Z = [n; Wis eony Wosomg Wi, .

where n = N(T*), m = M(T*)

an are the M-S~S's for and B,, respectively. ey
N(T*) anda M(T*) the M-S~S's for 8, and 8, tively. Th

are independent with N(T*) - Po(Bluo(T*)) and M(T*) - Po(Bzuo(T*)).

;z Hence,

ﬂ; Lemma 5.1.1 Under PN, and conditionally, given N(T*) + M(T*) = N,

o N(T*) ~ B(N,%).

‘;3 The "natural” detection rule is then

3." Detection Rule C.I.1 Decide N + § iff N(T*) < e, or > c,, where

o 2 and c, are the appropriate percentiles of a B(N,%) distribution.

This detection rule is, as usual, illustrated by a numerical example

in the appendix.

3

s

::
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For the second sampling plan, the detection rule is based on an

F-distribution.

5.2 Sampling Plan II (Type II Censoring) For this plan the datas is

#*

% = [Wl, ceny wn; Wl, cesy W;], i.e. one observes the first n waiting

times of {N(t)} and the first m waiting times of {M(t)}. Then, one has
muo(.Wn)
i, (W)
The "natural" detection rule here is then

Lemma 5.2.1 Under PN,

- F(2n,2m).'

muo(wn)

Detection Rules C.II.1 Decide N + S iff =
‘an (W)

< fl or > f2, where

fl and f2 are appropriate percentiles of an F(2n,2m) ~ distribution.

For the next two sampling plans, the detection rules are baéed on

conditional binomial distributions as in Section 5.1 above.

5.3 Sampling Plan III (Regular Sampling) The M-S-S's for the

B, and B, are N(nAl) and M(mAz), respectively (Section 2.3).

Further, it is immediate that

Lemma 5.3.1 Conditionally, given N(nAl) + M(mAg) = N,
Uo(na, )

UQ(nAl) + l-lo(mA

N(nAl) ~ B(N,p), where p
n, then p = %.]

[Note: 1If A, =8,8ndm

The detection rule is then

Detection Rule C.IIT.1 Decide N + S iff N(nAl) < a, or > a,

(where 8y and a, are appropriate percentiles of the B(N,p) - distribution).
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hia An analysis rule is derived for equal-distance sampling.
i
%: 5.4 Sampling Plan IV (Equal-Distance Samp;;ng) The data here is
XY
33 z = [N(tl), cees N(tn) M(ty), ..oy M(tm)] and the M-S-S for B, and B, |
are N(tn) and M(tm), respectively.
<§i The detection rule is, then,
.
i Detection Rule C.IV.1 Decide N + S iff N(t ) { b, or > b, (vhere
W b1 and b2 are appropriate percentiles of the B(n,p) - distribution),
g u(t.)
3 with N = N(t_) + M(t_) and p 0o _n .
3 n m Wo(E) + Bl
Y . ' |
A:‘ The final detection rule for this signal detection problem is also
ES based on a conditional distribution. However, this conditional distribution
- 1s not binomial.
J 5.5 Sempling Plan V_(Same Shape Sampling) The two independent
i
s .
fg stochastic processes of interest are {N(t)} and {M(t)} with mean functions
e
‘ Bluo(—) and_82u°(°), respectively. One introduces two independent
4 NHPP's {K"(t)} and {M*(t)}, which are independent of the original processes,
]
‘g and which have waiting times {W;} and {V;}, respectively.
g
‘: The data here is then
) _ » * » »
\' z = [N(W]), ..., B(WD);5 M(VD), ooy M(VD)]
o
- From Section 2.5 and some straightforward derivations, one concludes
’s Theorem C.5.1 (1) N(W}) and M(V) are the M-S-S's for 8, and B,,
TA

respectively. (ii) Under PN, P{ N(W:) =35 | N(W:) + M(V;) =k }

" RRERA

-1
k"l)]

n + s-1 + k-s-1 n+
R N Gt B (Gl

= P(s | n, my k) where N = n + m,
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v On the basis of this result, the detection rule becomes

o
é: Detection Rule C.V.1 Decide N + S iff N(w:) < ¢, or > c,, where
-: 1 o

4 O

P(s| nymy k) + T P (s n, m k)= a.

, s=0 s=02

Ph

ALY

(3N

KRR AR

LA
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6. Problem D (Constant Intensity Ratio)

This detection problem is closely related to the previous problem.
Essentially, for Problem C, PN entailed the equality of the intensities
of two independent NHPP's. Here, PN entails that the intensity of the
first process be a fixed constant multiplé of the intensity of the second
process.

Under such circumstances, the data vectors and the M-S-S's for the
various sampling plans are the same as in Section 5; and the detection
rulgs are closely related to those of Section 5. For that reason, these

rules will be listed with a minimum of discourse.

PN : 8, = voBy, Vs ‘N+S: 8y # YoB,

‘6.1 Sampling Plan I (Type I Censoring)

Detection Rule D.I.1 (See Rule C.I.1) Decide N + S iff

N(T*) 5.81 or > 855 where a8y and a, are appropriate percentiles of

v
the B(N,p) - distribution, with N = N(T*) + M(T*) and p = i—;ﬁ%;—
[o]

6.2 Sampling Plan II (Type II Censoring)

Detection Rule D.II.1 (See Rule C.II.1) Decide N + S iff
myoug(W_)
YoHo 2

" < fl or > f2, where the f's are the appropriate percentiles
Dug(W )

of the F(2n,2m) - distribution.

T e e .
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6.3 Sampling Plan III (Regular Sampling)

Detection Rule D.III.1 (See Rule C.III.1) Decide N + S iff

N(nAl) < &) or > a,, where a, and a, are appropriate percentiles of

1
Youo(nAl)
Youo(ndi) + uo(mAg)

the B(N,p) -~ distribution, with N=n + 1 and p =

6.4 Sampling Plan IV (See Rule C.IV.1) (Equal-Distance Sampling)

Detection Rule D.IV.1 Decide N + S iff N(tn) <byor 2 by,

where b, and b, are appropriate percentiles of a B(N,p) - distribution,

Youo(tn)
Y, uo(tn) + uo(tm)

with N = N(tn) + M(tm) and p

6.5 Sampling Plan V (See Rule C.V.1) (Same-Shape Sampling) The
detection rulé for this sampling plan is quite different ffom the other

rules encountered up to this point. The crucial point here is that the

m,
1+ YoBl

respectively under PN. Hence, their sum, when Y, # 1, is not distributed
as a Negative Binomial variable. One, hence, resorts to a likelihood
ratio procedure.

For the special case m = n = k, one has

Theorem 6.5.1 (1) The likelihood function is

N(w) | M(V)

L( S ) = ( )k g
yll’ ceey 3lk’ y21s cees Yox P1P2 1 )

]
—.__r_ - - 3
where pr = 175 Br and qr 1 ) for r 1,2.

e ta Tw e e e AW e e Ta Lt T, . o . T e,
N ' St e P I . - B )

RN R . . . o . - . Ve
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2 .

B Y,B
M-S-S's N(Wy) and N(Vy) are distributed N-B(n,.i-:ig_) and N-B(m, —21—),
: 1

rUvy - wow
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(11) The unconditional maximum of L(y) is achieved for

N(Wg) -1 ) M(Vg) -1
= [1+ = ]  and p, = [1+ -
(111) Under PN i (y)
ii nder » P = Yo - p24(1-787’ and L X is maximized
2 A 2 5
for P, = [1 + x] 1 and P, = 2

Yo ¥ P2 (l-Yo)

where x = [b yo]'l (€l + v, - KL N(W;)]Z + 8, KNG + M(V;)]f%
-y, - P (UW))

N(W;)]—k—n(wi) . M(V;)]-R-M(vﬁ)

(1v) L(g, Py» p2) = [1+ - | 1+ -
* . % *
[N(Zk)]N(Wk) [M‘(Vk)]M(V;)
- - o A, :. - N(W*)
(v) Ly, py» By) = {v, b, (1-v ) [(1-v)) p, + v] ok

2 M(VY) 2 -
[p, (1-y )] ¥ [(1-Y ) p, + Y] k

From standard statistical derivations, it follows that
(}:9 1319 ﬁz)

Theorem 6.5.2 under PN, S*¥ = -2 1n — xi
(ys p;» By)

Therefore, the detection rule is

Detection Rule D.V.1 Decide N + S iff S* ¢ xf (a).

. . ST T . T T B S » L e e R « - - - .
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T. Signal Detection for Problem E: c-Sample

s

kf{ For this problem, one has data from c independent NHPP's :
3R

E:j{ {Nl(t)}, {Nz(t)}, cees {Nc(t)}. The laws of these processes,
s

5{1, ...,5£c are all in a(ug).

The detection problem is

éfc vs N+5S :éf;'s are not all equal

e
2
"
Ras
n
I

Bl = 32 = ... = Bc) |
For this problem, the detectlon rules are much more tractable if the
sample "sizes" are "equal," in the appropriate sense, and this latter

condition will be_assuﬁed.

The data for the various sampling plans is as given:

-~

Data for Sampling Plan I: W = [Wl, W2, ey Wc], where the waiting
times are W, =_(er, cees err) and Nr(T*) =k forr=1,2, ..., c,

i.e. each process is observed until time T*,

Data for Sempling Plan II: Y = [yl, cees wc], where Yr = [wrl, cees WEN]

-~

forr=1, 2, ..., ¢} 1.e. each process is observed until the Nth waiting time.

Data for Sampling Plan III: N = [N, ..., N ]Jor Y =1[Y, ..., Y]
where N = [N (a), N (24), ..., N.(ka)] and Y_ = [Y_,, ..., Y1,
with Y _ = NésA) - Nr([s-l]A) and Nr(O) =0forr=1,2, ..., ¢

and s =1, 2, ..., k.




_27_

Data for Sampling Plan IV: y = [yl, cees N Y Yoo oees Yo

vhere N = [Nr(tl), cees N (t,)] and Y. = [Y.» s Yo 1, with

Y = Nr(ts) - Nr(t

rs ) and Nr(O) =0 forr=1, 2, ..., ¢ and

s-1

Data for Sampling Plan V: ¥ = [Nl’ cees yc] or Y = [¥1, ceey zc]
_ %* * _
vhere, N = (W) e, Nr(wrk)], and Y = (Y ., ..oy Y]
= * - * = =
Yrs = N(wrs) N(wr,s—l) and Nr(O) Oforr=1, ..., ¢ and

s=1,2, ..., k. Here, (W}, ey (W3} ere ﬁaiting times of independent

NHPP's each with_ﬁean function uo(-) and independent of Nl(t), cees Nc(t).

Based on data of the type abové, one finds several detection rules

to be related.

Detection Rules D.I.1, D.III.l and D.IV.1l Decide N + S iff
* _ ¢ "_=ng =,-1 2 _
s = ; [N, -N]° [F] > x__; (3-9).

For Sampling Plan I, III and IV, N; = N(T*), N(ka) and N(t, ),

‘ — S
respectively; and N = ¢ 1 % N; in each case.

5

i; ' For the Sampling Plan II, one employs Hartley's (1950) procedure

g for homoscedasticity, which is applicable here since 23ru°(WfN) ~ XSN

X

- Detection Rule D.II.1 Decide N + S iff

[max {u (W_,)}] [min {u_(W_ )}] 1 > h", the appropriate percentile of
r o rk r o rk ’

Hartley's distribution.
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The final detection rule is related to determining whether or not
¢ independent negative binomial random variables have distributions

with the same probability p (of success).

Based on the likelihood-ratio criterion, one derives

Detection Rule D.V.1 Decide N + S iff L* > xi_l(l-a), where

_ _ e
L* = 2ck 1n(k+z) - 27 In (—2 —) +2 I z_ Iln(———)
k + 2 r=1 T k+z
c
= * - _ -1
2, = N.(W ) and z =c¢ i Z ..

One other detection rule is of some interest here.

Meelis (1974) considers a situation in which the N + S case involves

the {Br} constituting a random sample from an appropriate continuous

distribution. Besed on his work, one arrives at

. c 2 »
Detection Rule D.V.2 Decide N + S iff & [Nr(W:k)] >a,
r=1

c .
where m = I Nr(W:k) and d* = d* (a, ¢, m) (the appropriate percentile
1

of Meelis' distribution).
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APPENDIX - Numerical Examples

[The calculations of the appendix were done by A. Mason.]

This appendix makes use of seven data sets. Those designated Data
Set.l, 2, 3, 4 and .5 are simulated sets of data from NHPP's with
the indicated mean functions. The last two data sets are records of
seizures for two diffefent_epilepsy patients.

~ The examples are grouped by problem (&esignated by letters A, B,
C, D and E) and by samp%ing plan (Roman numerals I, II, III, IV and
v). , A ,

For example, '"Case D.III." refers to Detection Problem D and

Sampling Plan III.
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L Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5
‘ u(t)=2.5t2 u(t)=t2 n(t)=4t u(t)=0.5t2 u(t)=0.25t2
|":
S 1 0.6621 1.5370 0.2640 1.6407 1.8609
S 2 0.8156 1.8415 0.3535 3.1687 4.2283
- 3 1.1033 2.2670 0.8270 3.1843 4.9514
- 4 1.142% 2.4329 1.4313 3.7095 6.3765
- 5 1.3875 2.6718 1.7190 3.7499 7.4145
’ 6 1.4569 2.9192 2.3334 3.8316 7.6608
7 1.6535 2.9655 2.7005 4.4190 8.8394
) 8 1.6554 3.3051 2.9981 4.7912 10.0257
A 9 1.7187 3.3359 3.0349 4.8704 10.7584
10 1.8768 3.6561 3.4578 5.1042 12.6299
11 2.1242 3.6623 3.8193 5.1537 12.8330
12 2.1813 3.8465 4.1066 5.3270 12.9096
13 2.2706 3.8716 4,2841 5.6595 14.0877
14 2.3851 3.9012 4.2980 5.8857 14.9650
15 2.4161 4.4260 4.3277 5.8861 15.1432
16 2.5016 4.4830 4.4119 6.4762 15.5248
17 2.5161 4.6552 4.9939 7.0334 15.9582
18 2.5183 4.7408 5.7613 7.0720 16.2997
19 2.5231 4.8441 6.1637 7.2839 17.2403
20 2.5745 4.8968 6.4948 7.3309 17.3774
21 '2.7927 4.9904 6.6561 7.6767 17.6973 -
22 2.9971 5.0636 7.1748 7.7333 . 18.6457
23 3.0902 5.0779 7.2400 8.2574 - 18.5428
24 3.1346 5.0933 7.3192 8.5161 18.5877
25 3.1652 5.2479 7.4199 8.3744 18.8340
26 3.1985 5.4329 7.7230 9.0870 18.8848
27 3.2867 5.4493 7.7686 9.1491 19.1638
28 3.3588 5.4559 7.9864 9.2653 19.3535
29 3.4849 5.5021 8.3356 9.7845 19.7537
30 3.5187 5.6157 9.4819 9.9437 20.0240
31  3.5476 5.6721 9.7305 10.0824 21.1768
32 3.5925 5.7419 10.1198 10.2001 21.6865
33  3.8160 5.9278 10.3810 10.4780 21.7489
34 3.8490 5.9652 10.5817 10.6291 22,2156
35 3.9115 6.0453 10.8142 10.9366 22.5020
36 3.9896 6.1611 10.9833 11.4502 23.1747
37 4.0754 6.2578 11.1056 11.6886 24.3404
38 4.1004 6.3962 11.3623 11.8080 23.7653
39 4.1185 6.3982 11.6609 11.9752 24.7081
40 4.1229 6.4602 11.7117 12.0659 25.1715
41. 4.2126 6.5531 12.1708 12.2152 25.2280
42 4.2949 6.5856 12.9102 12.2362 25.3121
43 4.2966 6.5952 12.9625 12.3179 25.3591
44 4.3525 6.6012 13.6038 12. 3855 25.7556
45 4.4296 6.6321 14.5538 12.4373 25.7794
46 4.4329 6.7129 15.2888 12.4553 26.0114
47 4.4472 6.7171 15.3994 12.4829 26.3572
48 4.5433 6.9320 15.4766 12.9268 26.6164
49 4.5572 7.0581 15.5336 13.0550 26.9873
50 4.5681 7.1849 15.5897 13.2268 27.1501

..... - [T T
e e e e L S IR |

. “« . DR U I T T I TN
I P P I T B P P P T T T ST T T T AT Y. W N Y Y S S s ot Y b B o Sma Bonn Do Bs B



-2 -

Epilepsy Patient 1

* Start: 7:00 Stop: 19:00

SZR TIME ' DURATION (Sec)
1 7:23 3.3
2 - 7:35 3.5
3 7:49 4.4
4 ~7:50 3.5
5 9:46 4.1
6 10:04 3.3
7 10:0S8 2.6
8 . 10:22 3.0
9 . 10:48 5.2
10 10:50 2.8
11 10:58 3.6
12 12:46 3.4
’ 13 14:10 . 2.4
14 14:57 3.2
15 16:57 3.2
16 17:18 3.4
17 17:36 3.4
18 18:07 3.4

.........
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Epilepsy Patient 2

o0, -
A n e B

Start: 7:50 Stop: 19:50
SZR TIME DURATION (Sec)
1 8:00 2.8
2 8:21 2.2
3 8:58 17.2
4 9:02 16.2
5 9:14 13.8
6 9:15 14.8
7 9:18 22.8
8 9:22 17.4
9 9:30 18.8
10 9:44 2.2
11 9:49 17.6
12 10:31 3.4
13 10:36 14.8
14 10:37 6.3
15 12:16 1.5
16 12:58 15.2
17 14:59 15.0
18 15:04 16.6
19 16:10 3.8
20 16:16 10.6
21 16:31 7.0
22 16:32 14.4
23 16:33 12.0
24 16:34 16.8
25 16:34 9.6
26 16:35 17.0
27 16:36 17.6
28 16:36 14.7
29 16:38 10.0
30 16:41 12.0
31 16:42 9.5
32 16:44 7.8
33 16:46 4.6
34 16:50 7.8
35 16:51 6.8
36 18:36 11.4
37 19:03 12.8

2 mlale At
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Problem A: (lass-fit, or Goodness-of-fit with Nuisance Parameter.
PN: Le Q(uo) vs. N+ S: L¢ Q(uo)
2

where uo(t) =t".

Case A.I: Observe N(t) until time T*. The data is of the form

wl, Wo, «ovy Wk where k = N(T*).
Detector Statistics: (i) Kolmogorov-Smirnov
o= s [ ) -y K - S(K)
= sup = e [z - -zl N -
Koz R oga T H(M) PN
(ii) Neyman-Barton _ -
' vV -1/2
= 121 VP oo l. ¥ 2 Ay 2
By =k(V -3, V' -5 .o, VP - 0] ) Ve - 1/3 ¥ %
W 1/p+1
— kU (W.)
r 1 0 T
where V = [ ]
k j=1 Ho (T*)
n
and ] = G
rs

Ors = (r+s+1) (r+1) (s+1)

Detection Rules: (i) (A.I.1.) Decide N + S iff Dk > dk o

(1) (A.1.2.) Decide N+ iff B > x;, 1 -a




For Data Set 1:

C.V.
* *) =
T N(T*) = k Dy (4, 01’ Decide 7
3.00 22 0.17 0.337 PN
4.50 47 0.10 0.238 PN
B, eV Decide By eV Decide
(X3,.99) (X3, .99)
0.75 PN 0.81 : PN
9.21 , 11.35
0.42 | PN . 0.84 PN
For Data Set 3:
T* N(T*) = k D, (C'V" y  Decide
4 ,.01
4.50 16 0.17 0.392 PN
10.00 21 .32 0.285 N+S
|
o 1
B, (CZV‘ ) Decide B, (CZV' \ Decide
X3,.99 X3 .9y
4.59 PN 5.16 PN
9.21 11.35 ‘
14.67 N+S 16.96 N+S .

o __ A

i
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Case A.II: Observe N(t) until Nth event. The data is of the

form W., W eees N

1’ 72 N’

Detector Statistics:

(i) Kolmogc.ov-Smirnov

N

I A e L (N-1)
D =  sup T € [z - -z v K-S(N-1
N1 gegar | N1 50 HolMy PN
(ii) Neyman-Barton —
. V-1/2
2 ) 1= v 2
B.= (N-1)[V - 1/2, V° - 1/3, ..., VP - 1/p+1] ¥ Ve - 1/3 | v X
P * PN P
V'p - 1/p+1
-_ N-1 p (W.) SN
1 0 T :
where V& = ——— [ ] and y = (o)
N-1 j=1 uO(WN TS
5 = rs
TS (r+s+1) (r+1) (s+1)
Detection Rules:
(i) (A.II.1.) Decide N + S iff DN-l > dN-l,a
. . . . 2
(ii) (A.11.2.) Decide N + S iff Bp > xp,l-u
For Data Set 1 (N = 50) the following values are obtained:
(1) D49 = 0.06 Decide PN, since critical value is d49’.01 = 0.23
(ii) B2 = 0.60 Decide PN, since critical value is Xg 99 = 0.21
B, = 1.16 Decide PN, since critical value is X2 = 11.35.
3 3,.99

. . - - . “ - - - . -
IR T R U R F o T T N A
s NP WY Tag JaE ) PR Gy, D G WL R A T T SN -SR-S R I DUt IO G R AP NP S
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e For Data Set 3 (N = 50) the

critical values as above)
(i) D49 = 0.04 Decide PN.
(ii) B

2

Bs

Case A.III: Regular Sampling

Uhserve N(t)

Data Set 1 (A = 0.50)

N(d) =0

N(24) = 2
N(38) = 6

N(44) = 10

N(54) = 15

_ N(64) = 22
"i; N(78) = 29
. N(8A) = 36

N(94) = 47

at regular intervals of time

BRI A A A B i e e e e B A i e (i Syt Anae A A A i e S Rt
ol S A LRSI N o T PR

........

following values are obtained (same

28.49 Decide N + S.

29.86 Decide N + S.

A, 24, ..., kA

Data Set 2 (A = 1.00)

" N(A) = 0
N(24) = 2
N(34) = 7
N(44) = 14
N(54) = 21
N(6A) = 34
N(74) = 48

- b.N(kA) \2
A ( y. - 2
o - o k i up(kd) N,

Detector Statistic: T = Z b N(KA) PN %-1

=l ]
Mo (kA)
where yj = N(jA) - N([j - 118) =1, ..., k
and b; = uy(j8) - uy([j - 114)
e TN T W T T T N P T TR m T T e -
RPN VRO, s R AT P L A T U U S T ST Rt TR B RTINS ST ST IR
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Detection Rule: Decide N + S iff T > Xi

¥

-1,1-a

p* -
s
Ja

For Data Set 1 (k

9, A

0.50) we compute T = 1.35. Since the

. critical value 15 Xg 99 = 20.1 one decides PN.

13

N 'y
AN
«

X Case A.IV: Equal-Distance Sampling

)
-

Observe N(t) at times tl’ tz, cens tk where the t's are chosen

O - 5 RN B0
- ""‘ R Y
e e

" e e %

so that uo(tj) - uo(tj_l) are equal for every j =1, ..., k; ty = 0.

2 . . .
If we assume uo(t) =t , a convenient choice for the observation

times are t; = vj for j =1, ..., k.

.
A,

‘ [uo(tj) - uo(tj_l) =1 for all j].

CA

A
TN ..,
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B T B
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7; Data Set 1 (k = 10) Data Set 2 (k = 15) Data Set 4 (k = 15)

: N(t)) = 2 N(E)) = 9 N(t,) = 0
N(tz) =5 N(tz) =0 N(tz) =0

;; N(tg) =9 N(t,) =1 N(t,) =1

N N(t,) =10 N(t,) = 2 N(t,) = 1
N(tg) = 12 N(ts) =2 N(te) =1
N(t6) = 15 N(t6) =4 ‘ N(t6) =1

_ N(t) = 20 N(t,) = 4 N(t,) = 1

; N(tg) = 21 N(tg) = 5 N(tg) = 1

? N(tg) = 22 N(tg) = 7 N(ty) = 1

: N(t;q) = 24 N(t,o) =7 N(t,y) =1

- N(t,,) = 8 N(ty) = 3

g N(t ) =9 N(t;,) = 3

N(tls)‘ 9 N(tls) =3
N(tl4) 11 N(t14) 4

E N(t,g) = 12 N(t,c) =6

:

N Detector Statistic: T = é z (YJ. - Y)2 ~ X,y Where

- Y j=1 PN

2

: Y; = N(t) - NCty ).

24 " : . 2

‘ Detection Rule: Decide N + S iff T > xk-l, 1-a

For Data Set 1, Y = 2.4 and we get T = 6.77. Since the critical

value is Xg,.gg = 2.1.67, one decides PN. For Data Set 2, Y = 0.80

F and we get T = 10.45. Since the critical value'is Xf4’.99 = 29.14,

A

e e e e e




. one decides PN.
.{.
Case A.V.: Same-Shape Sampling.
Observe NHPP N(t) with mean function Buo(t) at times wf, w*,
wi, where the w*'s are the waiting times of an independent NHPP
N*(t) with mean function uo(t). For these examples, Data Set 1 is
observed at the waiting times of Data Set 2 (u(t) = tz). Also, two
more independent processes with u(t) = t2 were generated to provide
times of observation for Data Sets 4 and 5.
Data Set 1 Data Set 4 Data Set 5
NWd) =6 NP = 0 N(WP) = 0
. Nwg =9 Nw3) = 1 NG =0

NGg) = 12 N(w3) = 1 N =0
N(wz) = 15 N(wz) =1 N(wZ) =1
N(wg) = 20 N(wg) = 1 N(w#) = 1
N(wa) = 21 N(wg) =1 N(wg) =1
N(w;) = 21 N(w;) =1 N(w;) =1
pr = 28 NW§ =1 : pr =1

& N(wg) = 27 N(wg) = 1 N(wg) =1

%j N(w? o) = 32 N(w* o) =3 N(wfo) =1

Ei N(w?* 1) = 32 N(w>* 1) =3 N(w*l) =1

!! N(w*z) = 33 N(wfz) =3 N(wlz) =1

?; N(wls) = 34 N(w* ) = 3 N(w* ) =1

2 N(w* ) = 34 N(w* 4) =4 N(w14) =2

.g N(w? 5) = 44 N(w* 5) =4 N(WIS) =2

2 N(wi) = 47 N(wl) = § N(w3) = 2
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[ (n, - kﬁ(c.)
- Detector Statistic: T = Z L ~ 2 N Xi_l
' i=1 kp(c;) PN

where n, = number of y;'s in Ci (one of s mutually exclusive

class covering the non-negative integers).

. Detection Rule: Decide N + S iff T Xz
s-1, 1-a
A If we take s =5, then for i =1, ..., 5

i' Ci = {5 +i-1: j=0,1, 2, ... }. Thus, Cl = {0, 5,'10, 15, ... },
3 C, = {1, 6, 11, 16, ... } etc. For Data Set 1 we have k = 16 and
F o NOWe) 47 '
* = i =T e——— = e—
N(w16) 47. The MLE of B is B 16 8 2.94. We also have

p=+B =025 ana pcy = p@ 1-g07t for i=1, ..., 5.

The ﬁ(Ci) and the kﬁ(Ci) (with k = 16) are computed as:

p(C;) = 0.330 kp(C,) = 5.280
p(C,) = 0.246 kp(C,) = 3.936
ﬁ(cs) = 0.184 kp(C;) = 2.944
p(C,y) = 0.137 kp(C,) = 2.192
P(Cg) = 0.102 kp(Cg) = 1.632
ne ni are

n1 = 7

n, = 5

n, = 0

n, = 4

n. = 0

e Y L e 4;:;;;‘-=C;Aﬂ
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E The computed statistic value is T = 6.915 and the critical value is
2 _ .
X4,.99 = 13.277. Therefore, decide PN.
4 Problem B: Goodness-of-fit.

PN:  u(*) '= BOUO(.)(B=BO) " vs. N+ S: u() # BO“O(')(B#BO)

Case B.I.: Observe N(t) wuntil time T*.

Detector Statistic: N(T*) ~v P (B.u.(T*))
PN .07 070

Detectioﬁ Rule: Decide N + S iff N(T*) < a, or N(T*) Z.az'

TET T

where .3 and a, are appropriate percentiles of the Poisson distribution.

. For Data Set 1, consider the following detection problem:
PN: B =1, vs. N+S: B#1

If T* = 3.00, then we observe N(3.00) = 22. Also, u(T*) = ByHo(TH) =
(1)(3.00)2 = 9.00. From Poisson tables, the critical values are

a = 2 and a, = 18 " (with FAR o = .0115). - Thus, one decides N + S.

Case B.II.: Observe N(t) until Nth event.

2 1
W) ~X .
N PN 2N

Detector Statistic: T = ZBOuO

Detection Rule: Decide N + S iff T < b1 or T> b2 where b1

and b2 are appropriate percentiles of the X§N-distribution.
For Data Set 2, assume uo(t) = tz.
We observe W., = 7.1849 and consider the following three detection

50




K problems:

(i) PN: B =2 vs. N+S: B#2
(ii) PN: B =1 vs. N + S: B#1

(iii) PN: 8

0.5 vs. N + S: B # 0.5

In each case the critical values are

2
b1 = XIOO,.OOS = 67.328 and
b 2 = 140.169.

2 = X100, .995

We then compute

(i) T = 2(2)(7.1844)% = 206.49 and decide N + S.
(ii) T = 2(1)(7.1849)% = 103.25 . and decide PN.
(iii) T = 2(.05)(7.1849)% = 51.62 and decide N + S.

Case B.III.: Regular Sampling (See data on page 7).

2
k (y. - b.B)
Detector Statistic: T = Z 41,b441,0 N Xi
j= j

1 jvo PN

N

Detectinl Rule: Decide N + S iff T > Xk 1-a

For Data Set 1, we will consider:

PN: B = 2.5 vs. N + S: B # 2.5
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(y.-b.BO)2

j Y, b8, (v;-b;80) 5,5
1 0 0.625 0.391 0.625
2 2 1.875 0.125 0.067
3 4 3.125 0.766 0.245
4 4 4.375 0.141 0.032
5 5 5.625 0.391 0.069
6 7 6.875 0.016 0.002
7 7 8.125 1.266 0.156
8 7 9.375 5.641 0.602
9. - 11 10.625 0.141 0.013

1.811

Since the critical vaiuve is Xg 01 = 2.088 one decides PN.
y -

Case B.IV.: Equal-Distance Sampling (see data on page 9).

Detector Statistic: N(tk) ;ﬁ Po(Bouo(tk))

Detection Rule: Decide N + S 1iff N(tk) <a, or N(tk).i a

1 2

and a, are appropriate percentiles of the Poisson distribution.

1 2

Suppose one is interested in testing

where a

PN: B =1 vs. N+S: B#1

for Data Sets 1 and 2. Taking k = 10, one has Nl(tlo) = 24




N
<
X - 15 -
N
{
- _ . o ) 2
5 and Nz(t1o) = 7. Since tj = v/j, it follows that Bouo(tk) = (DI =
;% 10. From Poisson tables, the critical values are a1 = 2 and a2 = 20
(with FAR o = .0063), so one decides N + S for Data Set 1 and
PN for Data Set 2.
. Case B.V.: Same-Shape Sampling (see data on page 10)
N .
:{ Detector Statistic: N(wﬁ) v NB(k,p) where p = [1 + BO]-1
. PN
Detection Rule: Decide N+ S iff N(w#) <b, or N(w#) > b,
»3 ‘ ~are appropriate percentlles of the negat1ve Binomial dlstrlbutlon
3 Consider the following problem:
, PN: B =1 vs. N+ 8S: B#1
>
s For Data Set 1, we observe N(w*.) = 47. Thus k = 16 and p = 1 = l-.
To.compute critical values, we must find b1 and b2 such that
3 _a _a 1 '
z P(x j_bl) =5 and P(x z_bz) =3 where X v NB(16, 3 - A corrected |
i |
o (Gram-Charlier) Poisson approximation will be used (see Johnson and Kotz, j
N b, - NP |

1

" _
Discrete Distributions, pg. 129). P(X j_bl) N P(Y g_bl) - -ETT—:fﬁj-P(Y = bl) |

where N = 16, P T'iLE =1 and Y~ Py(NP). Thus,
N b, - 16
P(X <b)) VP <b)) - 7 P(¥ =

where Y P0(16).

From Poisson tables,

.
'-.»..s ------ ., - . e - .- B U
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6 - 16
4

P(X < 6) % .0040 - (.0026) = .0105

so b1 = 6 with approximate tail probability .0105.

To find bz, we must satisfy:

a
P(X2b) =1-P(X<b,-1) =53
or P(X<b,-1)=1-2
=5 _ 2
| N (b, -.1) - NP
P(X<by, - 1) VP(Y by - 1) - ST

where N, P and Y are defined as above. Thus,
P(X < 28) ¥ .9978 - 3(.0019) = .9921

1] b2 = 29 with approximate tail probability .0079.
The critical values are therefore b1 =6 and b2 = 29 with

FAR o = .0184. Since we observed N(WI6) = 47, decide N + S.
Problem C: Two-sample

PN: L, =1 vs. N + S: L, #1L

2., _ 1

Case C.I.: Observe N(t) until time T¥*.

Detection Statistic: Conditionally given N(T*) + M(T*) = N,

N(T*) ~ B(N, 1/2) (under PN)

Detection Rule: Decide N + S iff N(T*) < ¢, or N(T*) > ¢

1

- P(Y = b, - 1)
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fi; can be determined using the Normal approximation to the Binomial.
. y
- = - N(A72)(172)
c, = N(1/2) Z4/2 (1/2)(1/2)

il =

¢, = N(1/2) + 2z, N(172y(172)
-~ If Data Sets 1 and 2 are observed until T* = 3.00, we arrive at
A N(T*) = 22 and M(T*) = 7. For o = .01
X

¥
A;ﬁ ¢ = 29(1/2) - 2.576 v29(1/2)(1/2) = 7.56
P-o."
‘:; c, = 29(1/2) + 2.576 V29(1/2)(1/2) = 21.44
N Since N(T*) = 22, one decides N + S.

h Case C.II.: Observe N(t) until Nth event.
i& Detector Statistic: T = Eﬁ_fwiji ~ F(2n, 2m)

: 0" m’” PN

E: v Detection Rule: Decide N + S iff T < F(Zn, 2m, o/2) or

) T>Feon, 2m, 1-0/2)°

o For Data Sets 1 and 2 assume

i L, L, e Q) and p(t) = t2

e ) S 0 0 :

o

L Taking n = 40 and m = 50 we find:
» ‘
,’.: Weo = 41229 and W2, = 7.1849.

N

")

"

:2\ i
7y
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2 50(4.1229) 2
s - Thus, T = . 7 = 0.412.
a . 40(7.1849)
: Since the critical values are F80,100,.005 = 0.70 and F80,100,.995 = 1.41
M
3 decide N + S.
\‘
Ay
Case C.III.: Regular Sampling
.L.‘
3.' Detector Statistic: Conditionally given
< '
- N(nd,) + M(md,) = N, N(nd,) vB(N,p) (under PN)
2 B, (na,)
o where p = (nA;)+1(mA)
- Hotn%y) * Hplm%,
¥ Detection Rule: ‘Dec.ide N + S iff N(nAl) < cl’ or N(nAlj > cz';
¢ .
- where ¢, and ¢, can be determined using the normal approximdtion
to the Binomial:
1
o = - -
1 ¢y = Np - z,,, Np(1 -p)
i
-
3 cp=Np+2 ., Ap(1 - p)
Ll
If Data Sets 1 and 2 are observed (with n =9, A1 = 0.50, m=7,
" Az = 1.00) we arrive at N(nAl) = 47 and M(mAz) = 48. Thus,
’ N = N(nd)) + M(md,) = 47 + 48 = 95 and
: Ho(ndy) i (4.5) - 0.2
o Hp(ndy) + uy(mdy) 4.5)% + (7.0)2
.
T ":',:"'Q';';".’:,‘;';'L'- L LW A.".'-".‘-:;;L-_A-_;:l';-;'i
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¢, = (95)(0.29) - (2.576) v¥(95)(0.29)(0.71) = 16.36
c, = (95)(0.29) + (2.576) +v95(0.29)(0.71) = 39.20

Since N(nAl)

47, one decides N + S.
Case C.IV.: Equal-Distance Sampling

Detector Statistic: Conditionally given

N(t) + M(t) = N,  N(t)) * B(N,p)

where

Yo ()
uo(tn) + u(‘,(tm)

p'—‘

Detection Rule: Decide N + S iff N(tn) < b1 or N(tn) > b2
where b, and b2 can be determined by the Normal approximation to the

Binomial.

o
[

1 = Np - za/z 'ﬁi;(l - p)

o
[

2 = Np + 2(1/2 'ﬁf’(l - p)

For Data Sets 1 and 2, with n =10 and m

15, we observe

: 2 e
N(t,,) = 24 and M(t ) = 12. Since Ho(t) = t° and tj = ¥j, we have

Ho(tyo) _ (VI 10
Ho(t1g) * Ho(tys) Vi)l + (IHE P

)
"
o
'S

P =

Thus (for o = .01),
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b1 = (36)(.4) - 2.576 v36(.4)(.6) = 6.83
b2 = (36)(.4) + 2.576 V/35(.4)(.6) = 21.97

Since N(tlo) = 24, one decides N + S.
Case C.V.: Same-Shape Sampling

Detector Statistic: Conditionally given

N(WA) + M(VH) =k, N(W2) ;N F*

where
(n+s-1) (m+k-s—1
\ s k-s

)

» (N =.§|N(WI*1) + M(V¥) = k} =

n+m+k-1)
k

Detection Rule: Decide N + § iff N(W;) < c{ or N(W;)

> c5 where

c* and c* are the largest and smallest non-negative integers such that

1 2

c*-1

1 * = * * = g
SZO Ppo [N(W?) = s|N(WA) + M(V4) = k] < 5
k o
I Pr IN(W%) = s|N(WX) + M(VY) = k] < 3
s=c5+1

For Data Sets 4 and 5 we observe N(WI6) =5 and M(V{G) =2, so

k = N(w ) + M(Vv* To compute critical values CI and

16) =

ci:
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(0
0/V 7/ 170544 ‘

= = .0135
(38) 12620256

Thus, for FAR a = .027, the critical values are c¢* =1 and c* = 6.

1 2
Since N(Wfs) = 5, decide PN.
Problem D: Constant Intensity Rate.
PN: Bl = Yob, vs. N + S: Bl # YOBZ
Case D.I.: Observe N(t) until time T*. |
L
Detector Statistic: Conditionally given
N(T*) + M(T*) = N, N(T*) ~ B(N,p) {under PN)
Yo
where p =T vy
0
Detection Rule: Decide N + S iff N(T*) < ¢, or M(T*) > <y
where < and c, are determined as in Case C.I, replacing p = 1/2
with p = ——9% . Suppose we tak = 2.5, then p = ——=2— = 0.71
i P=T7 Yo . upp le we e Y, = 2.5, P=-—T+55 =071

Using Data Sets 1 and 2, consider the following problem:
PN: ul(t) = (2.5)u2(t) vs. N + 5: ul(t) # (2.S)u2(t)

As before, we observe N(T*) = 22 and M(T*) =7 for T* = 3.00.
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The critical values are computed below: (a = .01).

¢, = 29(0.71) - 2.576 v29(0.71)(0.29) = 14.45
c, = 29(0.71) + 2.576 v29(0.71),0.29) = 26.98
Since N(T*) = 22, one decides PN.
Case D.II.: Observe N(t) until Nth event.
Detector Statistic: T ='———_—ﬁﬁ7f__ N F(2n, 2m)
nHy PN - :

Detection Rule: Decide N + S iff T < F

or T > Fion, 2m, 1-0/2)

As in Case C.II, we observe w40

YO = 2.5, the computed value of the detector statistic is

_ 50(2.5) (4.1229)°
40(7.1849)°

T 1.0

Since the critical values are F80,100;.005 =

decide PN.
Case D.III.: Regular Sampling

Detector Statistic: Conditionally given

N(nd,) + M(md,) =N, N(nd;) v B(N,p)

(2n, 2m, a/2)

= 4.1229 and Wr, = 7.1849. If

0.70 and F

A e e

......... e m e e
PR N S L TR 50 B AT DR A

50

29

80,100,.995 - 1-41

(under PN)

LY

.....
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t;: where P = (:gug(tAt)(mA 3 ’

= YoHo M4y 0™

[

Ny Detection Rule: Decide N + S iff N(md,) < c, or N(nd,) > c,,

v < 1 1 1 2

?&3 where ¢, and c, are computed as in Case C.III. _
' !

e For Data Sets 1 and 2 we consider: |

;2 PN: B1 = (2,5)82 vs. N+ S: -Bl # (2.5)82 '

sol (2.5) (4 -5)2

\i : Again, N =95 and p = = 5~ = 0.51.

-\-,, (2.5)(4.5)° + (7.0)

k-2 Thus, (for @ = .01)

'.';;; ¢, = (95)(.51) - (2.576) ./S5(.S1)(.49) = 35.75

'_';: |

) -

w cy = (95)(.51) + (2.576) v95(.51)(.49) = 60.80

;; Since N(nAl) = 47, one decides ' PN.

.

'23 Case D.IV.: Equal-Distance Sampling

S: Detector Statistics: Conditionally given

2

.

o N(tn) + M(tm) =N, N(tn) ~ B(N,p)

PN

v, 7 \‘ A
&3
L) 1

where

’
‘e
_a

3

::.. _ Youo (tn)

(s ToHg(t) *+ Ho(t) ,
F

" . a4 . ‘
. a a1
oy ‘ ..‘ ."‘. ey ." ." ..'
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E: Detection Rule: Decide N + S iff N(tn) < b1 or N(tn) >b

N -

14 where b1 and b2 are determined as in Case C.IV. Suppose one wants

~ to test

}:

"

» . = :

. PN: B, = 2.58, vs. N + S: B, # 2.58,

4R

N for Data Sets 1 and 2. For n =10 and m = 15, we observe

-

N(t;p) = 24 and M(t o) = 12. Since  w (%) = t2  and t; = /. we have

_ Toto(t1e) - (2.5) (/D) 2 L2500 s

. YoHo(t10)*¥(t15)  (2.5) (v/10) 24 (/15) 2 (2.5) (10)+15

N . Thus (for a = .01),

7 b, = 36(.63) - 2.576 /36(.63)(.38) = 15.02

f‘

i b2 = 36(.63) + 2.576 V36(.63)(.38) = 29.98

Since N(tlo) = 24, one decides PN.

1SRN

Case D.V.: Same-Shape Sampling
Here, two methods are available: Method 1, based on the likelihood
ratio and Method 2, wusing a normal approximation to the Binomial distri-
bution. Sampling Plan V is slightly modified for Method 2. Instead of
, generating two independent 'moise' processes to provide times of observa-

tions, we observe the two processes of interest at the waiting time of a

J.'.‘. RS o DR AT

single independent same-shape process.
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Method 1 (LH ratio)

e
o, a8 -8 4
Ciie Sl Ut )

Detector Statistic: L = -2 log

= ‘ where

XY
[
+
~<
[
(5]
+
<
N
—
+
<
Pt
P
+
<
N

P I o
ﬁ:o:nlll‘.

A‘Al

where

L 1 -:-'4_"(

o
. 5
LN

L N
g
—
=

DA
et _‘A.‘n

R

RO
R e

A A N(W®) +M(V¥)
RO | _pap K

Ly =Y

' k+n (w)

and

T T e T e ™ _-_—_-.j
- - - - - - . Ta T Te . f- . - . - - .

e BN

Y v = - 2 —
(3‘Y0+)’2'Y0+)’1.-1) b /(3Y0+YZ.Y0+YI.-1) + 8Y0[1-Y0+y2.(1-Y0)]

e}
"

Z[YO " 1 - )’2.(1 = Yo)]

I‘ " , A.-l

A
A
An obvious requirement is for 0 < p < 1, and in many cases (i.e.,

only 1 root on [0,1]) the decision whether to use '"+" or "-"

DRTOION | | 43¢

in the abdve formula can be based on this. In the case of two roots on

[0,1], further investigation is needed.

-
-
]
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E: Detection Rule: Decide N + S iff L > X2 . Consider the

1,1-a

following detection problem.

vs. N + S: 61 # 564

s .3 X

where 81 and B are associated with Data Sets 1 and 4, respectively.

o If we observe MN(W* ) = 47, M(V* ) = 5, then
i 16 16
' - 47
2 Z o =
3 Y1. =16 = %94
and
2 - _ 5 _
‘: ) )'4 = 16 = 0.31
% ' We now compute:
*
S A
p = 0.6665
- L, = 3.0919 x 10”2}
I, 1
' Ly = 1.6743 x 10721
N Lo '
) L =-2 log T = -2 log (1.8467) = 1.2268. Since the critical value is
X 1
' x> __ = 3.84, deciee PN
1,.95 ’ *
“
) Method 2. (Binomial type)
S N (W) =y M(w2)
Detector Statistic: Z= LS ¥ 9

VN + MW Ty, PN

The above statistic is derived using the fact that, given N(wy) + M(w§) = N,
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c. Yo
N(w*) ~ B(N, —) (for large N)
k™ oy 1+,

Detection Rule: Decide N + S iff 2Z >‘zO‘/2 or 2 < -za/z.

Again, consider the problem.

PN: Bl = 584 vs. N+ S: Bl'# 584

This time we observe both Data Sets 1 and 4 at the waiting times
from Data Set 2. If we take k = 16, wf6 = 4.4830 and our final

observations are
N(WI6) = 47 and  M(w?* 6)

Thus,

47 - 5(7)
/(a7 + )5

= 0.731

and we decide PN.
Consider two epileptics (patients 1 and 2) who have seizure times
given on pages 2-3. Assume the processes can be modeled as NHPP's

with mean function of the form

_a 40.5 .

We want to test the following situation:

PN: B, = 0.2562 vs. N + S: Bl # 0.2582

1

v, -'-

\ "‘h—m—n._l-i;l -!.d.gg[dl.(&‘._‘hﬁ:‘ . < :M‘:’L:&‘i".:n-i .“'.-‘
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%
3
3
L
<
QY
v

2> I
-; An independent NHPP with mean function u(t) = to'S is generated to
f; ” provide times of observation. For k = 50, we have
if. Wk, = 239.40 min. = 4.0 hours
‘i‘ and we observe
:._-;3 N(wgp) = 11  and M(w%) = 14
" :
.4
X Thus,
N N 7 = 11 - (0.25)14 = 3.0
“j . /(11 + 14)(0.25)
\J ' .
y . and we decide N + S.
¥ ' Problem E: c-sample | '
~;\. .
o PN: L1 = ...0= Lc vs. N + S: Li's' not all equal
QJ‘
. Case E.I.: Observe N(t) until time T*.
") —
3 ¢ W™ -DF
. Detector Statistic: T = Y — vOXo
i=1 N PN
™ - ¢ |
e where N -1 I N.(T%. !
A c . ]
o j=1
et Detection Rule: Decide N + S iff T > x2 .
¥ c-1,1-a
* ‘ .
' ; Consider the case c¢ = 4, where the four samples consist of the

points of Data Set 3 observed at time 0 - 4.0, 4.0 - 8.0, 8.0 - 12.0,




Ny (T*) = 12 and N,(T*) = 10.
value is T = 2.32. Since the

decides PN.
Case E.II.: Observe N(t)

Detector Statistic: T =

- 29 -

12.0 - 16.0. Thus T* = 4.0 and we observe NI(T*) = 11, NZ(T*) = 17,

(N = 12.5). The computed statistic

.. . 2
critical value is X:(,,.99 = 11.35, one

until Nth event.

1,... c}

max {uo(wiN):1

Detection Rule: Decide N

s2

SZ

100(1 - )% point.of the
If Data Set 3 is diviaed into
have | |

1,12
2,12
3,12

4,12
Since Li € Q(uo), i=1,

T - 4:4933

S2 max

S2 min

From tables of the

b* = 7.6 is obtained'(for o=

D .'. -". -‘\o’ “u' Cer e e
Sl Sl Sl gt W4 b CW. Ng¥. Wi

3.2126

min {uo(WiN)E1 1,... c}

+ S iff T > b* where b* is the

max distribution (Hartley).

min

4 samples of 12 observations~each; we

4.1066

3.2126

3.6641

4.4933
..» 4 wWith uo(t) = t we compute
= 1,3986

distribution, a critical value of

.01 and 11 degrees of freedom).
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g We therefore decide PN.
»
Case E.III.: Regular Sampling
ko,
> . s 2
N Detector Statistic: T*= ¥ T.~% X° (ck - k)
N j=1 J pN . :
2
¢ (N (58)-F)? o,
where T. = ) — J and N. = < ) Ni(JA)
“j I =1 N. J i=1
J
2
d . . . 2
Detect19n Rule: Decide N + S iff T* > xck-k,l-a
° If, for Data Set 3, we take A =0.50 and k = 10, Nl(jA), Nz(jA)
and Ns(jA) can be generated consectutively:
. ..
.1
S ,
O . . . . . T '
2 ia NG NG N (34) N, T,
-\ 0.50 2 0 2 1.33 2.00
A 1.00 3 1 5 3.00 2.67
' A '
< 1.50 4 3 7 4.67 1.86
' 2.00 5 4 9 6.00 2.33
b 2.50 6 8 10 8.00 1.00
N : ‘
’ 3.00 8 11 12 10.33 0.84
- 3.50 10 . 12 12 11.33 0.24
é 4.00 11 12 13 12.00 0.17 |
\
& . 4.50 16 13 13 14.00 0.43
- |
R 5.00 17 14 14 15.00 0.40
T* = 11.94

17 PRI
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Since the critical value is x220 99 = 37.57 one decides PN.

Case E.IV.: Equal-Distance Sampling

Detector Statistic: W=-21log1l

. [od
ZEN()l [zN(tk)] 2§N()1[1(“)] X2
= - t,) log [———1] + t,) lo N
i=1 k i=1 k' o8 py ©°1

2

Detection Rule: Decide N + S iff W > X
“c-1,1-a

Suppose we take k = 10 and c = 3 with Data Sets 1, 2 and 4 under

consideration. Then we have -

N (tlo) a, Nzttio) =7 and Ng(t ) =

The statistic is'computed as follows:
_ 32,4 24 7
W= -2[32 1°g(30)] + 2]24 108(359 + 7 log(Taa
+1 log( )] = 28.29
Since the critical value is X; 99 = 9.21, one decides N + S.

Case E.V.: Same-Shape Sampling

Detector Statistic: L = -2 log 1% X2
PN

where

PEVASNSAN SN
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X
L = 2ck log(k + X) - 2¢cX 10g(~—:j + 2 Z X; log(—~%)
k+X i=1 1

[
-2k § log(k + X,)
s 1

i=1

and Xi = Ni(wi).

2
c-1,1-a

Detection Rule: Decide N + S iff L > X

Suppose we consider Data Sets 1, 4, and 5 with k = 16. We then

have
X, = N (w16) - 47 Xm0
x2 = N (w16) =5
Xg = N (w16) =2 oX log(—X—) = 5410g(0.53) = -34.34

k+X

= 2(3)(16) log(34.0) - 2(-34.34)
+ 2[47 log (63) + 5 log ( ) + 2 log (18)] 2(16) [1og 63 + log 21 + log 18]
= 338.53 + 68.69 - 50.68 - 322,50 = 34.04.

Since the critical value is Xg 95 = 5.991 decide N + S.
-

__________________________
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